RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data

ROLLS

ROYC

© 2024 Rolls-Royce

Ameri, Nima – Rolls-Royce, Civil DiglTal Advanced Analytics Babu, Shiva - Rolls-Royce, SS&CE,Design Systems Gurbani, Yashwant – Rolls-Royce, SS&CE,Design Systems Nunez, Marco – Rolls-Royce, SS&CE,Design Systems Ravichandran, Siddharth – Rolls-Royce, Civil DiglTal Advanced Analytics Adriaenssens Marjorie – Databricks, Jain, Puneet - Databricks

Jun 2024

Content

- Context & Motivation
- Conditional Generative Adversarial Networks
- Methodology
 - Functional flow diagram & toolset
 - Encoding
 - Prediction extraction
 - Decoding
- Results
 - Fuel Spray Nozzle design
 - Multi -stage fan design
- Cloud capabilities
- Future work

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

Context & Motivation

Multi-Fidelity Tools

Numerical Methods

Machine Learning (cGAN)

 Preliminary Design
 Detailed Design
 Scan processing

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image: Detailed Design

 Image: Detailed Design
 Image: Detailed Design
 Image:

Damage identification

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

Conditional Generative Adversarial Networks (cGAN):

What is a cGAN

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

- Neural network used for generating realistic text, audio, images or video
- Consists of two neural networks generator and discriminator

Training process

- 1. Train generator and discriminator using a 'real' dataset
- 2. Generator creates item
- 3. Discriminator decides if it is a 'real' item, or made by the generator
- 4. Generator and discriminator learn from the outcome and adjust model
- Eng tool developed in MATLAB by the University of Southampton
- The encoded images** produced by the encoder are fed into the cGAN

** The IP described on this slide is protected by patent.

 cGANs thus offer an alternative to expensive simulations, with a prediction accuracy R² of up to 97%

encodings

Conditional Generative Adversarial Networks (cGAN*):

Benefits over conventional workflows

* Andy J. Keane and Ivan I. Voutchkov, Embedded Parameter Information in Conditional Generative Adversarial Networks for Compressor Airfoil Design, AIAA, 4 Aug 2022.

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

A set of possible geometries that fall within the performance parameter of interest range (i.e. Loss Coefficient).

Methodology

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

System prototype within Rolls-Royce:

Encoding

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

- Encoding Images: Method used to embed a set of specific input/output parameters chosen by the user into an image.
- Utilises 'real' design images with design parameters to then encode these into the image in contrasting bar charts

Image Enc	oder & Decod	er Set-up			
Encoder Image Decoder			Histogram and Glyphs Definition I	Parameters	
Encoding Parameters File:			Histograms Image PrefixName		-
		Browse	Glyphs Image PrefixName		-
Images to Encode:			Number of Splits		-
		Browse		Configure	
Location to save encoded image:			Taper Angle		
		Browse	Maximum Pixel Height Value		_
J			Width of each bar in the Bar Plot		-
Location to sure instograms and gryphs	•		Distance Between Each Bar		_ Output
		Browse	Minimum Value Pixel Ratio		
Image Definition Param	neters		Histogram Images Scaling Factor		– paralite
Image Name			Encoded Image PrefixName		encodi
Top Left corner Point	х, у		Encoded Image Format	e.g. jpeg, png	-
Top Right Corner Point	х, у		Input Parameters to Encode	Select	
Bottom Left Corner Point	х, у		Output Parameters to encode	Select	
Bottom Right Corner Point	х, у			Encode	

System prototype within Rolls-Royce: Prediction extraction

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

User inputs

Use cases: Fuel Spray Nozzle design

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

10

High Cone Angle

Use cases: Multi-stage fan design use case

Use cases: Cantilever Beam

Key challenges:

- Higher-GPU resources
- Scalability (fidelity &dimensionality)
- Configuration (hyperparameters)
- Computational time Vs costs

Example of encoded image

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

Cloud capabilities

RR Data Non Confidential

© 2024 Rolls-Royce

Cloud capabilities

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

14

Cloud Advantages

- At least 1 Order of Magnitude reduction in comp time
- Hyperparameters optimisation
- Parallelisation
- Costs
- Scalability
- Traceability (MLFlow)
- Access Control
- Data [pre/post] processing automation

Design of Experiment: CPU vs GPU and Desktop vs Cloud

Exp (~	Do ~	Cloud Miflov ~	Valid ~	Environm	Hostname	Cloud	GPU/C ~	Sin	Computat ~	package 🗸	Package Name	File Name	version	architectu	Data	Encoder/~	Image Siz ~	Learning Ri
	?	Exp ID	on	t		Runtime		Node	n Spec		reference			1 -		coder		
			done?					?			(Orginal)							
1	LΥ		Y	Desktop	GBA-E105039872	N/A	GPU	Y	NVIDIA Quad	d Matlab	Matlab		R2021B	NGAN	matlabbeam_98K	Python	128X128	0.0002G/0
2	2 Y			Desktop	GBA-E105039870	N/A	GPU	Y	NVIDIA Quad	d Pytorch	Pytorch		1.12.1	Conv Layer	matlabbeam_98K	Python	128X128	0.0
3	8 Y		Y	Desktop	GBA-E105039872	N/A	GPU	Y	NVIDIA Quad	d Matlab	Matlab		R2021B	NGAN	matlabbeam_63K	Python	128X128	0.0002G/0
4	Y			Desktop	GBA-E105039870	N/A	GPU	Y	NVIDIA Quad	d Pytorch	Pytorch		1.12.1	Conv Layer	matlabbeam_63K_matlabe	Matlab	128X128	0.0
5	5 Y			Desktop	GBA-E105055523	N/A	CPU	Y	i9-10980XE 3	3 Pytorch	Pytorch		1.12.1	Conv Layer	matlabbeam_63K	Python	128X128	0.0
6	δY			Desktop	GBA-E105055523	N/A	CPU	Y	i9-10980XE 3	3 Pytorch	Pytorch		1.12.1	Conv Layer	matlabbeam_63K	Python	128X128	0.0
7	7 Y	PyTorch_cantil	e/	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch	CGAN with Pytorch	2.0.1+cu118	Conv Layer	matlabbeam_63K	Python	128X128	0.0
8	8 N		1	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Tensorflow	Tensorflow		2.14.1	Conv Layer	matlabbeam_63K	Python	128X128	0.0
9	9 N			laptop		N/A	GPU	Y	NVIDIA T120	(Pytorch	Pytorch		1.12.1	Conv Layer	matlabbeam_63K	Python	128X129	0.0
10	N			laptop		N/A	CPU	Y	11Gen Intel	C Pytorch	Pytorch		1.10.2	Conv Layer	matlabbeam_63K	Python	128X130	0.0
11	N			laptop		N/A	CPU	Y	11Gen Intel	C Tensorflow	Tensorflow		2.5.0	Conv Layer	matlabbeam_63K	Python	128X131	0.0
12	2 N		1	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch		2.0.1+cu118	linear Layer	matlabbeam_63K	Python	128X128	0.0
13	8 Y	PyTorch_cantil	eΥ	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch	CGAN with Pytorch	2.0.1+cu118	Conv Layer	matlabbeam_63K	Python	128X128	0.0
14	I Y	PyTorch_cantil	e/	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch	CGAN with Pytorch	2.0.1+cu118	Conv Layer	matlabbeam_63K	Python	128X128	0.0
15	5 Y			Desktop	GBA-E105055523	N/A	GPU	Y	i9-10980XE 3	3 Pytorch	Pytorch		1.12.1	Conv Layer	matlabbeam_63K	Python	128X128	0.0
16	5 N		1	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch_CKPTS		2.0.1+cu118	Conv Layer	matlabbeam_63K	Python	128X128	0.0
17	7 N		1	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch_CKPTS		2.0.1+cu118	Conv Layer	matlabbeam_63K_matlabe	Matlab	128X128	0.0
18	8 Y	PyTorch_cantil	eΥ	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch	cgan pytorch 128x128 v1	2.0.1+cu118	Conv Layer	matlabbeam_63K	Python	128X128	0.0002G/0
19	γ	PyTorch cantil	eΥ	Cloud		14.3 LTS ML	GPU	Y	NC6 sv3, 16	C Pytorch	Pytorch	cgan pytorch 128x128 v1	2.0.1+cu118	Conv Layer	matlabbeam 63K	Python	128X128	0.0002G/0
20	Y	PyTorch_cantil	e/	Cloud		14.3 LTS ML	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch	cgan_pytorch_128x128_v1	2.0.1+cu118	Conv Layer	matlabbeam_63K	Python	128X128	0.0002G/0
21	ΙY	PyTorch cantil	e/	Cloud		14.3 LTS ML	GPU	Y	NC6 sv3, 16	C Pytorch	Pytorch	cgan pytorch 128x128 v1	2.0.1+cu118	Conv Layer	matlabbeam 63K	Python	128X128	0.0002G/0
22	2 Y	PyTorch cantil	e/	Cloud		14.3 LTS ML	GPU	Y	NC6 sv3, 16	C Pytorch	Pytorch	cgan pytorch 128x128 v1 n	ne 2.0.1+cu118	Conv Layer	matlabbeam 63K matlabe	Matlab	128X128	0.0002G/0
23	3 Y	PyTorch cantil	e N	Cloud		14.3 LTS ML	GPU	Y	NC6 sv3. 16	C Pytorch	Pytorch updated	cgan pytorch 128x128 Upd	at 2.0.1+cu118	Conv Laver	matlabbeam 63K	Python	128X128	0.00026/0
24	Y	PyTorch cantil	e/	Cloud		14.3 ITS MI	GPU	Y	NC6_sv3, 16	C Pytorch	Pytorch updated	cgan pytorch 128x128 Upd	at 2.0.1+cu118	Conv Laver	matlabbeam_63K	Python	128X128	0.0002G/0
25	Y	PyTorch64/per	</td <td>Cloud</td> <td></td> <td>14.3 ITS MI</td> <td>GPU</td> <td>Y</td> <td>NC6 sv3 16</td> <td>Pytorch</td> <td>Pytorch 64x64</td> <td>cgan pytorch 64x64 (CGAN)</td> <td>vi 2.0.1+cu118</td> <td>Conv Laver</td> <td>matlabbeam_63K</td> <td>Python</td> <td>64X64</td> <td>0.00026/0</td>	Cloud		14.3 ITS MI	GPU	Y	NC6 sv3 16	Pytorch	Pytorch 64x64	cgan pytorch 64x64 (CGAN)	vi 2.0.1+cu118	Conv Laver	matlabbeam_63K	Python	64X64	0.00026/0
		· · ·	1,	ol 1		1.0.170.141		2						o i	111 690		10004	

Cloud Compute Strategies

databricks

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

15

- 1. Number of images < .5M
 - Single Node GPU
- 2. Number of images > .5M
 - Single Node multiple GPU
 parallelization or

• N

O C

- Multi Node cluster for Distributed computation
- 3. Hyperparameter optimisation
 - Multi Node cluster for Distributed computation

Databricks Single GPU config example

w	Compute >		
orkspace	Databricks Single Node GPU 🖉		
cents	Policy ①		UI JSON
talog	cpu_all_purpose_sn_policy_cgan		
mpute	Multi node 💿 Single node 🛇		
	Access mode ① Single user access ①		
Editor	Single user		
eries	Performance		
shboards	Databricks runtime version ⁽¹⁾		
rts	Runtime: 14.3 LTS ML (GPU, Scala 2.12, Spark 3.5.0) VID	IA EULA ()	
ery History			
L Warehouses	Use Photon Acceleration		
	Node type ①		
Runs	Standard_NC6s_v3 [V100] 112 GB Memory, 1 GPU V		
ta Ingestion			
Ita Live Tables	0		
e Learning	Tags 0		
yground	Additaon		
periments	Kay		Add
itures	toute		Huu
odels	> Automatically added tags		
ving	Advanced options		
rketplace			

Results: Training data

Experiment3 Epoch160 bin3

3 y_act

y_act

16 Contains no expor © 2024 Rolls-Royce

Results: CPU Vs GPU

xp ID	Done	Cloud Miflow	Validati	Environmen	Hostname	Cloud	GPU/CPU	Single	Computatio packag	ge Package Na	me	File Name	version	architecture	Data	Encoder/D	e Image Size	Learning Rate	Batch	Numb	Number
	?	Exp ID	on	t		Runtime		Node	n Spec	reference						coder			Size	er of	of Latent
-	-	-	don 🔻	-	-	-	-	? 👻	-		-	·		· ·	-		•	-	-	filte 🔻	Dimen 🔻
6	Y			Desktop	GBA-E105055523	N/A	CPU	Y	i9-10980XE 3 Pytoro	ch Pytorch			1.12.1	Conv Layer	matlabbeam_63K	Python	128X128	0.0002	50	64	1 100
15	Y			Desktop	GBA-E105055523	N/A	GPU	Y	i9-10980XE 3 Pytoro	ch Pytorch			1.12.1	Conv Layer	matlabbeam_63K	Python	128X128	0.0002	50	64	1 100

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

Results: Current Challenges & WIP

& PCUIBCI Discriminator loss Configuration UseGPU = False BatchSize = 50 shuffle = True learningrate = 0.0002 onvergence Generator loss classes = 7 embeddingdimension = 50 NoOfFilters = 64 **Discriminator Structure** labels Architecture

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

Future work

The IP from ongoing work is protected by patent.

RR Data Non Confidential © 2024 Rolls-Royce Business proprietary Contains no export controlled data © 2024 Rolls-Royce

- Short term:
 - Continue investigation and definition of best practices for the setup of settings
 - Dimensionality limits shift to fully 3D NN processing

- Longer term:
 - How to exploit knowledge from unsuccessful/unconverged simulations
 - How to address studies with multiple (conflicting) objectives and design metrics

